Anti-Borrelia antibodies in rodents: Important hosts in ecology of Lyme disease

Article in Annals of agricultural and environmental medicine: AAEM · February 2004
Source: PubMed

8 authors, including:

Mangesh Bhide
University of Veterinary Medicine in Kosice - …

Michal Stanko
Slovak Academy of Sciences

Marketa Derdakova
Slovak Academy of Sciences

Some of the authors of this publication are also working on these related projects:

APVV 14-0218 Deciphering the ligand-receptor interactions involved in central nervous system invasion by pathogens and development of targeted therapeutic strategy against neuroinfections
View project

Genetic diversity of selected medically important emerging and reemerging pathogens with zoonotic potential. View project

All content following this page was uploaded by Marketa Derdakova on 25 January 2014.

The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
ANTI-BORRELIA ANTIBODIES IN RODENTS: IMPORTANT HOSTS IN ECOLOGY OF LYME DISEASE

Astéria Štefančíková1, Mangesh Bhide2, Branislav Peťko1, Michal Stanko3, Ladislav Mošanský3, Jana Fričová3, Markéta Derdáková1, Milan Trávníček2

1Parasitological Institute of the Slovak Academy of Science, Košice, Slovakia
2University of Veterinary Medicine, Košice, Slovakia
3Institute of Zoology, Slovak Academy of Sciences, Košice, Slovakia

Abstract: Data presented in this study focuses on the presence of anti-Borrelia antibodies in small mammals from Eastern Slovakia during 2000-2003. The total seropositivity observed was 18.78% in rodents. Amongst all species, the total seroprevalence in Apodemus flavicolis was the highest (20.87%), followed by Apodemus agrarius (19.58%) and Clethrionomys glareolus (11.11%). However, the prevalence in Apodemus flavicolis during the year 2000-2001 was higher (26.72%), which reduced to 10.60% in 2002-2003. To compare the year range of seroprevalence in other small mammals was not feasible due to the small sample number. Area-wise distribution of anti-Borrelia antibodies was even (18.75% to 20%) in this study, except in the Boľany province (0%). This confirms the equal distribution of Borrelia spirochetes in the other 3 localities. Prevalence of anti-Borrelia antibodies during summer was significantly higher than during autumn and early spring. The overall study also reviews the importance of small mammals in Lyme disease ecology.

Address for correspondence: Dr. Asteria Štefančíková, Parasitological Institute of the Slovak Academy of Science, Hlinkova 3, 04001 Košice, Slovakia.
E-mail: astefan@saske.sk.

Key words: Borrelia burgdorferi, rodents, ecology, IgG antibodies, ELISA.

INTRODUCTION

Lyme borreliosis is a tick transmitted disease of humans as well as of animals caused by the genospecies Borrelia burgdorferi [3], characterized by a unique skin lesion, erythema chronicum migrans (ECM), often followed by rheumatic, neurological and cardiac symptoms [24]. The relationship between the tick Ixodes ricinus, the principal European vector of Borrelia burgdorferi sensu lato [13] and its hosts defines the transmission dynamics of Lyme borreliosis. Research workers in Europe have recently concentrated on rodents for the enzootiological and ecological study of Lyme disease [23, 25]. According to Mather et al. [21], mice are quantitatively the most important reservoir host for B. burgdorferi nevertheless, the relative importance of different vertebrate species, including other rodents and birds, should not be neglected as potential amplifying host. Rats (Rattus norvegicus and R. rattus) [22] are similarly competent and locally important hosts of B. burgdorferi. Nine small mammal species, besides other animals, appear to be capable of transmitting spirochetes to ticks and thus participating in the natural circulation of B. burgdorferi s.l. in Europe. The house mouse, Mus musculus is strongly suspected of reservoir competence, and many other small rodent species, particularly in
eastern Europe and Russia, have been implicated [10]. In short, rodents of the *Apodemus* species are also important in the ecology and dynamics of the circulation of *Borrelia* spirochetes in Europe via *I. ricinus* tick vector. The importance of these animal species as an amplifying host depends on both their abundance and quantitative relationship with *I. ricinus*, which may vary seasonally as change in tick activity and tick/host contact rate [5].

The present study reflects minor serosurvey in small mammals from different parts of Eastern Slovakia, as well as species-wise comparison for seropositivity against *Borrelia burgdorferi*.

MATERIALS AND METHODS

The study was carried out in 4 different parts of Eastern Slovakia, namely, Rozhanovce, Šebastovce, Zemplinske Hradiště and Boňany, during 2000 and 2003 (Fig. 1). A total of 330 rodents of different species were trapped and screened for anti *Borrelia* IgG antibodies (Tab. 1). The ecological system in the above-mentioned areas is favourable for tick activity, with an abundance of small mammals and the presence of other reservoir as well as non-reservoir competent hosts. Small rodents were trapped alive using wooden traps at 8-10 m intervals in a wooded area. Rodents were anaesthetized and approximately 1 ml of blood was collected from the inner canthus of eye.

The sera were examined repeatedly by modified ELISA as described previously [29], with some modifications. In brief, whole cell sonificated *Borrelia* antigen (mixture of strains *Borrelia burgdorferi sensu stricto* + *Borrelia afzelii* - V 123, *Borrelia garinii* Ir 112 Eastern Slovakia) was fixed in microplate wells. 100 µl of serum diluted at 1:200 in phosphate buffer with 0.05% tween 20 and 1% BSA were added to each well and incubated at 37°C for 30 min. After a triple washing, 100 µl of anti-mouse IgG antibodies labelled with peroxidase (Sigma), diluted at 1:500 was added per well. After 30 min. of incubation and subsequent washings, 100 µl of substrate solution (Orthophenylene diamine) was added per well (pH 5.0). The reaction was stopped with 5% H₂SO₄ after 15 min. of incubation. Absorbance was measured at a wavelength of 492 nm. Experimentally infected mouse sera and sera from naturally infected small mammals, which were positive in repeated titrations, served as positive controls. Mouse sera that proved negative in repeated titrations, with their absorbance value less than 0.4, were used as negative controls. Cut-off was determined as a value of 3 standard deviations above the mean optical density (OD) for negative serum samples. Sera with the absorbance value higher than 0.5 were evaluated as positive. The reproducibility of ELISA: Panel sera samples were repeatedly examined (10 times) with the absorbance value in ranges: > 1.0; 0.5-0.8; < 0.4. The χ² test was used for statistical evaluation of 2 × 2 contingency tables.

RESULTS

A total prevalence observed was 18.78%, irrespective of area and species of rodents. Amongst different rodents, the highest prevalence was observed in *Apodemus flavicollis* (20.87%) followed by *Apodemus agrarius* (19.58%) and *Clethrionomys glareolus* (11.11%) (Tab. 1). During the year 2000-2001, seroprevalence observed in *Apodemus flavicollis* was higher than in 2002-2003. We could not compare the differences of the seropositivity in other rodent species due to a very low number of samples during 2002-2003.

Table 1. Presence of anti-*Borrelia* IgG antibodies by species of small mammals and years.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No of examined</td>
<td>No of positive</td>
<td>Prevalence (%)</td>
</tr>
<tr>
<td>A. flavicollis</td>
<td>116</td>
<td>31</td>
<td>26.72</td>
</tr>
<tr>
<td>A. agrarius</td>
<td>94</td>
<td>19</td>
<td>20.21</td>
</tr>
<tr>
<td>A. microps</td>
<td>15</td>
<td>1</td>
<td>6.67</td>
</tr>
<tr>
<td>M. arvalis</td>
<td>8</td>
<td>1</td>
<td>12.50</td>
</tr>
<tr>
<td>Cl. glareolus</td>
<td>26</td>
<td>2</td>
<td>7.69</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>260</td>
<td>54</td>
<td>20.77</td>
</tr>
</tbody>
</table>
Seasonal difference in the seroprevalence was obviously found in the study. The increasing trend of prevalence was observed from April until July, with the highest prevalence recorded in July (37.50%) (Tab. 2). No statistically significance difference (p>0.05) was observed between seroprevalence recorded in different regions (Rozhanovce, Sebastovce and Zemplinske Hradiste), except Boľany province (p<0.05) (Fig. 2).

DISCUSSION

Seroprevalence in the small mammals studied confirms their active exposure to the ticks infected with *B. burgdorferi*. In the study, comparatively higher prevalence was found in *Apodemus* in comparison to *Clethrionomys glareolus*, which parallels the findings reported by Aeschlimann et al. [2] and Travníček et al. [33]. According to Hovmark et al. [12], *Clethrionomys glareolus* is also one of the important species in which *B. burgdorferi* was detected. Nevertheless, Humair et al. [13] stated that even if the *A. flavicollis* and *A. sylvaticus* proved to have the greatest infectivity potential in Europe, the contribution of voles is not negligible in the maintenance of the Lyme disease spirochete. A previous study in Slovakia [33] reported a higher rate of infestation of *A. flavicollis* by *I. ricinus* than of *C. glareolus*. A similar observation was reported in Danish rodents [8] and also in rodents from Eastern Slovakia [11] wherein, mice were more heavily infested with ticks than bank voles. Moreover, a higher proportion of mice was infected with spirochetes than voles. However, prevalence of antibodies to *Borrelia burgdorferi s.l.* rodents in Poland showed higher seropositivity rates in the species *C. glareolus* in comparison with *A. flavicollis* and *M. arvalis* [25]. *Apodemus* species belong to the group of mice-like rodents with a wide home range, therefore there are more chances of contact with *I. ricinus*. On the other hand, *Clethrionomys* species lives mostly underground, and the possibility of contact with ticks like *I. ricinus* is less likely. This could be one explanation for the antibody prevalence in *Clethrionomys* species in our group of rodents being lower than in *A. flavicollis* and *A. agrarius*. It is also known that *C. glareolus*, but not *A. flavicollis*, progressivly acquires resistance to consecutive infestations by *I. ricinus* [6].

Differences in seroprevalence among different species of rodents might be due to variations in immune response. Although strains of *B. burgdorferi s.l.* seems to have numerous common antigens, mammals may not immunologically recognize a multitude of common epitopes in the same way [18]. Population changes, that is, fluctuations in birth and death rates, can also be an influence [25].

The seroprevalence of anti-*Borrelia* antibodies in mice is connected with the activity of ticks and small mammals. Humair et al. [13] found a higher number of infective rodents in late summer, after the peak abundance of nymphs, than in autumn. Rodents became infected with *B. burgdorferi* in mid-summer when *I. ricinus* nymphs fed actively. They further stated that the decline in numbers of infective rodents in autumn was due to the peak appearance of young *Apodemus* in rodent population. Our observations are in accordance with the above explanation. A significant increase in infected animals was observed in summer (p<0.05), with a decline in autumn months. A gradual increase in the infected rodent population was noticed in May, June and July (Tab. 2). Histories of tick bites and initial times of exposure of the small mammals are unknown in most instances [18]. The evidence of IgG antibodies can only serve as an indicator of mere contact with the agent of Lyme borreliosis, but it will not determine whether a titre represented current or past infection. It is well known that anti-*Borrelia* antibodies in dogs with subclinical infections or reinfections were found to persist for 1–2 years, or even more [17, 4]. It is also assumed that titres of anti-*Borrelia* antibodies in horses and cattle in endemic areas persist as a result of frequent reinfections [24, 34]. As regards the duration of spirochaemia and persistance of antibodies in small mammals, it can be assumed that antibodies could be persist for to 2 years, but short life span and other ecological factors - individual susceptibility, size of infective doses, primal infection or reinfection, etc., - limits the antibody persistance. Experimental studies with white-footed mice (*Peromyscus leucopus*) inoculated with *B. burgdorferi* produced IgG antibodies, beginning 5-7 days after inoculation and lasting until 84 days after inoculation, when the experiment was terminated [31]. It is known that some species of rodents can harbour *Borrelia* during all

Table 2. Anti-*Borrelia* IgG antibodies in small mammals by seasons of sampling.

<table>
<thead>
<tr>
<th>Month</th>
<th>No. of examined</th>
<th>No. of positive</th>
<th>Seropositivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>32</td>
<td>2</td>
<td>6.25</td>
</tr>
<tr>
<td>April</td>
<td>56</td>
<td>12</td>
<td>21.43</td>
</tr>
<tr>
<td>May</td>
<td>55</td>
<td>13</td>
<td>23.64</td>
</tr>
<tr>
<td>June</td>
<td>43</td>
<td>15</td>
<td>34.88</td>
</tr>
<tr>
<td>July</td>
<td>16</td>
<td>6</td>
<td>37.50</td>
</tr>
<tr>
<td>August</td>
<td>42</td>
<td>7</td>
<td>16.67</td>
</tr>
<tr>
<td>September</td>
<td>70</td>
<td>5</td>
<td>7.14</td>
</tr>
<tr>
<td>October</td>
<td>16</td>
<td>2</td>
<td>12.50</td>
</tr>
<tr>
<td>Total</td>
<td>330</td>
<td>62</td>
<td>18.79</td>
</tr>
</tbody>
</table>

Figure 2. Anti-*Borrelia* IgG antibodies in small mammals, according to the localities studied.
seasons, and Anderson et al. [1] found P. leucopus spirochetes throughout the winter.

The seroprevalence is also extensively influenced by the occurrence of infected ticks in the particular territory. Infected I. ricinus ticks are prevalent in almost all territories of Slovakia, with minor differences between individual localities [14, 15, 26, 27]. No significant difference (p>0.05) in the seroprevalences among the localities, except Boľany province, was observed in this study (Fig. 2). It seems that our observation reflects an even distribution of B. burgdorferi spirochete in these localities.

Borrelia infectivity rate in small mammals depends on the particular genospecies of B. burgdorferi s.l., occurring in a given locality, at a certain time, and the susceptibility of small mammals. According to data in literature, there is a relationship between individual genospecies and animal species, with small mammals acting as a main reservoir of B. afzelii, whereas birds serve as a host preferentially to B. garinii and B. valaisiana [16]. Although the prevalence is not strict [20], while using antigen from B. garinii isolate from Eastern Slovakia in serological diagnostics of the Slovak Republic.

Acknowledgement

This work was supported by Grants: No. 1/8114/01, No. 2/3213/23, VEGA No. 2/2017/22, VEGA No. 2/3112/23, APVT 51-004702 and No. 02809 from the Scientific Grant Agency of the Slovak Republic.

REFERENCES

